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LETTER TO THE EDITOR 

Effects of Brownian coagulation on droplet growth in a 
quenched fluid mixture 

Yoshihisa Enomoto and Akira Okada 
Department of Physics, Faculty of Science, Nagoya University, Nagoya 464-01, Japan 

Received 26 March 1990 

Abstract. We study the effect of Brownian coagulation driven by the thermal motion of 
droplets on the competitive droplet growth in a quenched binary fluid. To consider such an 
effect, we extend the classical theory of the Ostwald ripening by using a systematic method 
that was originally proposed by Lifshitz and Slyozov for the case of the encounter mechanism. 
We discuss the effect of Brownian coagulation on the asymptotic form of the droplet size 
distribution function and the growth law of the average droplet size. 

In the present letter we study the droplet growth in a quenched binary fluid driven by 
two mechanisms-that is, the evaporation-condensation mechanism and the Brownian 
coagulation. In off-critically quenched binary systems (alloy and fluid mixture), the 
former mechanism results in the competitive droplet growth called Ostwald ripening 
[l, 21. On the other hand, it has been pointed out [3,4] that the Brownian coagulation, 
or the collision arising from thermal motion of droplets, plays an important role in a 
quenched binary fluid only. It has also been shown [4] that this coagulation is negligible 
compared with the evaporation-condensation mechanism in alloy systems. 

It has been pointed out by Lifshitz and Slyozov (LS) [l] that for quenched alloy 
systems, in contrast to fluids, the mechanism of the encounters between growing droplets 
is important. Using the method outlined by LS, Davies et a1 [5]  have discussed the effect 
of this mechanism. Then they concluded that with increasing droplet volume fraction 
the asymptotic scaling form of the droplet size distribution becomes flattened and more 
symmetric than that of LS [l] and Wagner [2] (LSW). Moreover, they found that this 
mechanism increases the growth rate, although the average droplet radius is still pro- 
portional to the cube root of the time. 

Siggia [3] and Ohta [4] have shown that the Brownian coagulation is dominant for 
the droplet growth, except for in the region of small droplet volume fraction. However, 
they considered only ideal situations such as a monodisperse system. In the present letter 
we discuss more general situations, and moreover calculate explicitly the scaling function 
of the droplet size distribution function. For this purpose we use a similar technique to 
that of LS and Davies et a1 [ 5 ] .  

Letf(u, t )  be the droplet size distribution function per unit volume at time t ,  which 
describes the number of droplets that have volumes in the interval between U and U + d U .  
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Following LS, the kinetic equation off(u, t) for the case including collision as well as the 
evaporation-condensation mechanism can be written as 

with 

where a is the capillary length, R,(t) the critical droplet radius to be determined on the 
basis of the conservation law for the total droplet volume, and c ( u l ,  u 2 )  the collision 
frequency factor for collisions between two droplets of volumes u 1  and u2. The termJ, 
denotes the evaporation-condensation mechanism, and J 2  the collision. The form of 
c(uI, u2)  depends on the mechanism of collision [6-8]. For the encounter mechanism, 
LS showed that c(uI, u2)  is proportional to u1 + u2. For Brownian coagulation, it was 
shown by Smoluckowski [6] to be 

c(u1 ,  u 2 )  = p(u;’3 + u:’3)(u;1’3 + u;1’3) (4) 

where kBT is the usual thermal energy and 11 the shear viscosity. To obtain the above 
kinetic equation we have assumed that (i) the collision takes place instantaneously to 
form a larger droplet whose volume is the sum of the volumes of coagulated droplets, 
(ii) the collision occurs only between two droplets (the binary collision approximation), 
and (iii) the many-body effect beyond the LSW mean-field approximation is neglected as 
the first theoretical step and thus the critical radiusR,(t) is replaced by the average radius 
R(t), defined by 

R(t) = jm (3~/4n) l /~f (u ,  t) du/jomf(u,  t) du.  
0 

Now we discuss the asymptotic behaviour of (1)-(4). We assume the following scaling 
form off(u, t) [4]: 

with 
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x = v/U(t). (10) 
The requirement that the droplet volume fraction, Q, is independent of time leads to 

n = - 2  

together with 

xF(x) dx  = 1. 

We also have a normalisation condition from (7) and (9): 

Iom F(x)  dx = 1. 

Then, in terms of F(x) and G(t), equations (1)-(3) are rewritten as 

[2F(x) + x(d/dx)F(x)] (d/dt)G(t) = 4najl (x) - PQj;!(x> 

with 

j l  (x) = (d/dx) [ ( x ~ / ~  / U  - ~)F(x)]  

c ’ ( x ,  Y) = c(x, Y>/P 
a = Iom ~ l / ~ F ( x )  dx. 

Here we should note that from (6) and (9) we have 

(4n/3)R(t)3 = a3U(t). 

Integrating (14) with respect to x from 0 to a, we find the growth equation of the average 
size: 

(d/dt)G(t) = 4na(ehQ + F(0) )  (20) 

with 

h = 2(1 + ab) 

b = JOE x-lI3F(x) dx. 

Following the estimation by Ohta [4] we set e = 4/n. Inserting (20) into (14) we finally 
obtain the closed equation for F(x):  

F(x) + (d/dx) (G(x)@)) = -(4/n)gQh(x) (24) 

with 

G(x) = -(x’/~/u - l)g + x (25) 
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Figure 1. The relative growth rate, K(Q)/K(O) ,  as 
a function of Q with K(0)  = (4/9)(u. 

g = 1/(4hQ/n + F(0)) .  (26) 

These equations are mathematically analogous to those discussed by Davies et a1 [5] .  
We can thus solve (24) subject to conditions (12) and (13) by using the same iteration 
method. Hence, we shall quote only the final result, omitting intermediate calculations. 
The following results are obtained for each value of Q from20 iterations, as was outlined 
in section 2.6 of [5] .  

The function F ( x )  is convenient for calculation, but not for comparison with experi- 
ments. Since what is usually measured is the linear droplet dimension, we need to 
convert F(x) into a linear droplet size distribution function. As was discussed in [ 5 ] ,  the 
normalised scaling function for the linear droplet size,p(r), is given by 

p ( r )  = 3ux2I3~(x) (27) 

r = x 'I3 / U  (28) 

where r is the linear droplet size divided by the average one, R( t ) .  From (19) and (20) 
the average droplet radius, R ( t ) ,  is found to grow as 

R(t)3 - R(0)3 = K(Q)t 

where R(0) is the initial average droplet radius, and K(Q) the Q-dependent growth rate 
given by 

K(Q) = 3au3[(4/n)hQ + F(O)]. (30) 

We should remark that in the dilute limit Q +- 0 with K(0)  = (4/9)a from (24) and (30) 
we can recover the LSW theory. Numerical results for K(Q) and p ( r )  are shown as 
functions of Q in figures 1 and 2, respectively. In figure 3 we show the standard deviation, 
U, and the skewness, k,,  ofp(r)  for each value of Q. 

In summary, we have studied the effect of Brownian coagulation on the Ostwald 
ripening. With increasing droplet volume fraction, the growth rate K(Q) increases and 
the scaling function p ( r )  broadens, while the temporal power laws still hold. These 
results are similar to those for the encounter mechanism. However, in contrast to the 
case for encounters, the scaling function in the present case becomes positively skew, 
even though Q is small. This tendency is in good agreement with recent experimental 
results [9]. The detailed comparison of the present results with the experimental results 
as well as previous theories will be discussed elsewhere. 
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Figure3.?’hestandarddeviation, U ,  andtheskew- 
ness, k,, ofp(r) as a function of Q with U = 0.215 
and k ,  = -0.911 at Q = 0. 
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